# Crystalline silicon ndtset 5 gwpara 2 # Definition of the unit cell: fcc acell 3*10.217 # This is equivalent to 10.217 10.217 10.217 rprim 0.0 0.5 0.5 # FCC primitive vectors (to be scaled by acell) 0.5 0.0 0.5 0.5 0.5 0.0 # Definition of the atom types ntypat 1 # There is only one type of atom znucl 14 # The keyword "zatnum" refers to the atomic number of the # possible type(s) of atom. The pseudopotential(s) # mentioned in the "files" file must correspond # to the type(s) of atom. Here, the only type is Silicon. # Definition of the atoms natom 2 # There are two atoms typat 1 1 # They both are of type 1, that is, Silicon. xred # Reduced coordinate of atoms 0.0 0.0 0.0 0.25 0.25 0.25 # Definition of the planewave basis set (at convergence 16 Rydberg 8 Hartree) ecut 6 # Maximal kinetic energy cut-off, in Hartree ecutwfn 6 ecuteps 2.1 istwfk *1 nstep 50 # Maximal number of SCF cycles diemac 12.0 # Dataset1: self-consistent calculation # Definition of the k-point grid kptopt 1 # Option for the automatic generation of k points, ngkpt 2 2 2 nshiftk 1 shiftk 0.11 0.12 0.13 # These shifts will be the same for all grids chksymbreak 0 # Definition of the SCF procedure toldfe1 1.0d-6 prtden1 1 # Dataset2: definition of parameters for the calculation of the WFK file iscf2 -2 # non self-consistency, read previous density file getden2 -1 tolwfr2 1.0d-8 # it is not important as later there is a diago nband2 35 # Dataset 3 BSE equation with Model dielectric function and Haydock (only resonant + W + v) # Note that SCR file is not needed here optdriver3 99 getwfk3 2 inclvkb3 2 bs_algorithm3 2 # Haydock bs_haydock_niter3 200 # No. of iterations for Haydock bs_exchange_term3 1 bs_coulomb_term3 21 # Use model W and full W_GG. mdf_epsinf3 12.0 bs_calctype3 1 # Use KS energies and orbitals to construct L0 mbpt_sciss3 0.8 eV bs_coupling3 0 bs_haydock_tol3 -0.001 0 bs_loband3 2 nband3 8 bs_freq_mesh3 0 6 0.1 eV bs_hayd_term3 0 # No terminator # Preparation of interpolation bs_interp_prep3 1 # Dataset 4: definition of parameters for the calculation of the WFK file iscf4 -2 # non self-consistency, read previous density file getden4 1 tolwfr4 1.0d-8 # it is not important as later there is a diago nband4 35 ngkpt4 4 4 4 shiftk4 0.22 0.24 0.26 # Dataset 5 : Full BSE for comparison optdriver5 99 getwfk5 4 inclvkb5 2 bs_algorithm5 2 # Haydock bs_haydock_niter5 200 # No. of iterations for Haydock bs_exchange_term5 1 bs_coulomb_term5 21 # Use model W and full W_GG. mdf_epsinf5 12.0 bs_calctype5 1 # Use KS energies and orbitals to construct L0 mbpt_sciss5 0.8 eV bs_coupling5 0 bs_haydock_tol5 -0.001 0 bs_loband5 2 nband5 8 bs_freq_mesh5 0 6 0.1 eV bs_hayd_term5 0 # No terminator ngkpt5 4 4 4 nshiftk5 1 shiftk5 0.22 0.24 0.26 pp_dirpath "$ABI_PSPDIR" pseudos "PseudosTM_pwteter/14si.pspnc" #%% #%% [setup] #%% executable = abinit #%% test_chain = t31.in, t32.in, t33.in, t34.in, t35.in #%% [files] #%% files_to_test = #%% t31.out, tolnlines = 20 , tolabs = 1.1e-2, tolrel = 4.0e-2, fld_options = -ridiculous; #%% t31o_DS3_EXC_MDF , tolnlines = 800, tolabs = 0.5, tolrel = 4.0e-2, fld_options = -ridiculous; #%% t31o_DS3_GW_NLF_MDF , tolnlines = 800, tolabs = 1.1e-2, tolrel = 4.0e-2, fld_options = -ridiculous; #%% t31o_DS3_RPA_NLF_MDF, tolnlines = 800, tolabs = 1.1e-2, tolrel = 4.0e-2, fld_options = -ridiculous; #%% t31o_DS5_EXC_MDF , tolnlines = 800, tolabs = 1.1e-2, tolrel = 4.0e-2, fld_options = -ridiculous; #%% t31o_DS5_GW_NLF_MDF , tolnlines = 800, tolabs = 1.1e-2, tolrel = 4.0e-2, fld_options = -ridiculous; #%% t31o_DS5_RPA_NLF_MDF, tolnlines = 800, tolabs = 1.1e-2, tolrel = 4.0e-2, fld_options = -ridiculous; #%% [paral_info] #%% max_nprocs = 1 #%% [shell] #%% post_commands = #%% ww_cp t31o_DS2_WFK t32i_DS1_WFK; #%% ww_cp t31o_DS3_BSR t32i_DS1_BSR; #%% ww_cp t31o_DS4_WFK t32o_DS99_WFK; #%% ww_cp t31o_DS2_WFK t33i_DS1_WFK; #%% ww_cp t31o_DS3_BSR t33i_DS1_BSR; #%% ww_cp t31o_DS3_ABSR t33i_DS1_ABSR; #%% ww_cp t31o_DS3_BBSR t33i_DS1_BBSR; #%% ww_cp t31o_DS3_CBSR t33i_DS1_CBSR; #%% ww_cp t31o_DS4_WFK t33o_DS99_WFK; #%% ww_cp t31o_DS2_WFK t34i_DS1_WFK; #%% ww_cp t31o_DS3_BSR t34i_DS1_BSR; #%% ww_cp t31o_DS3_ABSR t34i_DS1_ABSR; #%% ww_cp t31o_DS3_BBSR t34i_DS1_BBSR; #%% ww_cp t31o_DS3_CBSR t34i_DS1_CBSR; #%% ww_cp t31o_DS4_WFK t34o_DS99_WFK; #%% ww_cp t31o_DS2_WFK t35i_DS1_WFK; #%% ww_cp t31o_DS3_BSR t35i_DS1_BSR; #%% ww_cp t31o_DS4_WFK t35o_DS99_WFK; #%% [extra_info] #%% authors = Y. Gillet #%% keywords = NC, GW, BSE #%% description = #%% Silicon: Solution of the Bethe-Salpeter equation (BSE) with the interpolation technique #%% In t31, preparation, BSE equation with Model dielectric function and Haydock #%% (only resonant + W + v), then full BSE #%% In t32, bs_interp_mode 1 #%% In t33, bs_interp_mode 2 #%% In t34, bs_interp_mode 3 #%% In t35, Rohlfing-Louie #%% topics = BSE #%%