# Single Ni atom ndtset 4 # First dataset : no atomic potential shifts natvshift1 0 # Other datasets : turn on the atomic potential shifts for d levels natvshift 5 # Second dataset : shifts of d levels atvshift2 10*0.05 # global shift of all d levels atvshift3 5*0.05 5*0 # shift of spin-up d levels atvshift4 0 0 0.05 0 0 5*0 # shift of spin-up m=0 d level # Common data acell 10 10.001 10.002 # This is to break the cubic symmetry, otherwise the shifts are symmetrized diemac 1.0d0 diemix 1.0d0 ecut 12 getwfk -1 kptopt 0 occopt 0 occ 4*1 6*5/6 # Avoid SCF problems by equal occupancies of relevant orbitals 4*1 6*5/6 pawecutdg 24 natom 1 nline 6 nsppol 2 nspden 2 nstep 40 ntypat 1 rprim 1 0 0 0 1 0 0 0 1 tolwfr 1.0d-14 typat 1 usepawu 1 dmatpuopt 1 # choose expression of the density matrix lpawu 2 xred 3*0 znucl 28 pp_dirpath "$ABI_PSPDIR" pseudos "28ni.paw" #%% #%% [setup] #%% executable = abinit #%% [files] #%% files_to_test = #%% t14.out, tolnlines = 9, tolabs = 1.010e-05, tolrel = 1.100e-03 #%% [paral_info] #%% max_nprocs = 2 #%% [extra_info] #%% authors = X. Gonze #%% keywords = PAW, DFTU #%% description = #%% Ni atom in a big box. #%% Test the use of the atvshift variable : #%% change the potential of the d orbitals. #%% topics = DFT+U, crystal #%%